Prediction of cardiac arrhythmia using deterministic probabilistic finite-state automata

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PAC-learnability of Probabilistic Deterministic Finite State Automata

We study the learnability of Probabilistic Deterministic Finite State Automata under a modified PAC-learning criterion. We argue that it is necessary to add additional parameters to the sample complexity polynomial, namely a bound on the expected length of strings generated from any state, and a bound on the distinguishability between states. With this, we demonstrate that the class of PDFAs is...

متن کامل

Using a satisfiability solver to identify deterministic finite state automata

We present an exact algorithm for identification of deterministic finite automata (DFA) which is based on satisfiability (SAT) solvers. Despite the size of the low level SAT representation, our approach seems to be competitive with alternative techniques. Our contributions are threefold: First, we propose a compact translation of DFA identification into SAT. Second, we reduce the SAT search spa...

متن کامل

Cycle Analysis for Deterministic Finite State Automata

A method for the determination of all cycles of deterministic finite state automata is presented. Using a finite field description GF(2) these automata are shown to correspond to multilinear state equations. Basic results from feedback shift register theory are recalled and developed towards a complete analysis tool for affine-linear automata. The multilinear case is reduced to the affine-linea...

متن کامل

The Complexity of Probabilistic versus Deterministic Finite Automata

We show that there exists probabilistic finite automata with an isolated cutpoint and n states such that the smallest equivalent deterministic finite automaton contains Ω(2 n log log n log n ) states.

متن کامل

Towards Feasible PAC-Learning of Probabilistic Deterministic Finite Automata

We present an improvement of an algorithm due to Clark and Thollard (Journal of Machine Learning Research, 2004) for PAC-learning distributions generated by Probabilistic Deterministic Finite Automata (PDFA). Our algorithm is an attempt to keep the rigorous guarantees of the original one but use sample sizes that are not as astronomical as predicted by the theory. We prove that indeed our algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biomedical Signal Processing and Control

سال: 2021

ISSN: 1746-8094

DOI: 10.1016/j.bspc.2020.102200